基于VR的空间设计课程教学创新

Teaching Innovation of Space Design Course Based on VR

一种模式——基于VR的空间设计课程教学模式

两个理念——基于3D交互的体验式、情景式教学

以学生为中心,从学生出发设计课程

三个阶段——课前策划、课中组织、课后输出

四种方法——基于VR的全新的案例分析、公众参与、

方案比较和推敲、成果汇报和展示方法

五大效果——增加乐趣、提升效率、提高质量、

节约成本、有成就感

1 种模式

基于VR的空间设计课程教学模式

——"材料与营造"课程VR教学实践

基于3D交互的体验式、情景式教学——教学各阶段强调利用VR体验自己的成果,VR提供"所想即所见"的实景般空间设计教学:实时模型修改、实时空间体验、实时方案推敲、实时细节改良。

以学生为中心, 从学生出发设计课程

个阶段

课前策划——VR软硬件准备,任务书

课中组织——实施过程以学生自治为主

课后输出——复制推广? 学生成为传播者

课前策划及准备 统计班上同学电脑配置——是否能进行VR内容制作、VR体验

序号	姓名	CPU	Mars	VR	内存	显卡	Mars	VR
1	梁思敏	i7-7700K	1	1	16g	GTX1050	2	
2	陈梓桦	i7-7700HQ	1	1	16g	gtx1060	1	1
3	罗智慧	i7-4710MQ	1	1	8G	gtx960m	2	
4	王力尧	i5的双2.4ghz	0	0	4g	gtx750m	0	0
5	何建峰	i7-7700HQ	1	1	16g	GTX1050ti	1	
6	孟川博	i7-7700HQ	1	1	8G	GTX1050	2	
7	吴镇伟	i7-7700HQ	1	1	8g	GTX1050	2	
8	岑浚烨	i7-7700HQ	1	1	8g	gtx1050ti4g	1	0
9	黄璇	i7-7700HQ	1	1	8g	GTX1050	2	
10	钱昕怡	i5-7200U	2	2	8G	GT2的HD620		
11	李凤婷	i7-6700HQ	1	1	8G	gtx960m	2	
12	温瑞琪	i5-4258U	2	2	8G	Intel(R) Iris(TM) Graphics 5100 (1024 MB)		
13	彭金康	i7-8700	1	1	8G	gtx1060 3g	1	1
14	黄岳钏	i7-7700HQ	1	1	8G	GTX1050ti	1	0
15	陈彦文	i5-7300HQ	1	2	8G	GTX1050	2	
16	蔡依雯	i5-7300HQ	1	2	8G	GTX1050ti	1	
17	王睿瞳	3.6ghz			32g	Nvidia QuadroP2000	2	0
18	钟佳洛	i5-8代	1	2	16g	gtx1070	1	1
19	杨光	i7-7700HQ	1	1	8G	GTX1050ti	1	0
20	李雪尔	i5的2.3ghz	1	2	8G	iris 640		

任务书

作业一(案例分析): 以小组选取案例为基础,利 用虚拟现实技术,探究建筑 材料与空间/环境营造的关系

作业二(建筑和室内设计) 选取一个美院实验室进行建筑和室内设计(改造或新建),结合一种或几种材料的营造逻辑及表现力进行课程设计,并体现与作业一研究主题与结论的关联性

作业流程:

- 1. 自由分组并依据成员属性做出合理分工
- 2. 每组商讨后提出一个研究主题
- 3. 确定实验分析方法
- 4. 实验过程数据记录
- 5. 得出结论并汇报

分组:原则上3人/组

角色分工:

- **1. 虚拟场景营造师**——主要负责建模、**VR**场景制作等资源 生产,可以选择组内美感与表现力优异的同学担任此角色。
- **2. 建筑材料分析师**——根据组内选取研究命题策划实验方法,并生成分析与结论,实验过程中所需虚拟场景由"营造师"制作,所需实验数据由"发言人"记录,可以选择组内分析能力与组织协调能力兼具的同学担任此角色。
- **3. 嘴强王者发言人**——前期担任组内作业过程中的记录者,内容包括三巨头实验过程照片、视频、"分析师"所需实验数据等;后期担任小组代表,在深刻理解本次研究过程基础上,于汇报当天发言。可以选择组内耐心、细心、语言天赋极高的同学担任此角色。

课中组织——实施过程以学生自治为主。制定课程设计策划书,按照课程设计流程计划执行,每周定期向老师汇报进度并寻求专业指导。

学生对新事物的接受 能力很强,很快掌握VR有 关操作,负责操作。

课后输出——本班同学通过课程锻炼,成长为掌握 VR技术的人才,可以马上成为下一个课程的**小老师**

著名重聚工作增加重整重模等。 報名時間: 12.01-12.11 派動時間: 12.10-01.10 惠勤形式: Workshop+新自通行理 标题: 建築高階組制/老校區與研/工作坊貸數攝式

Activity time: 12.10-01.10

Activity Theme: Virtual Restoration/Virtual Reproduction of Lingman Painting School Activity History Spac Workshop contents: collecting and sorting out the historical data, modeling the whole campus and virtual

Activity Form: Workshop + Practice Pass
Node Building Advanced Training/Old Campus Investigation/Workshop In

课后输出——复制推广?

隔壁班的学生、老师都

很好奇,体验后成为立即

参与者、传播者… …

全新的案例分析方法

用户深度参与设计的方法

直观的方案比较和推敲方法

新颖丰富的汇报和展示手段

种方法

全新的案例分析方法A:

选取案例(有SU模型),利用VR技术, 探究建筑材料与空间营造的关系

全新的案例分析方法B: 选取案例(有SU模型),利用VR技术, 探究建筑材料与环境的关系

用户/公众深度参与设计的方法

用户需求调查→概念方案→老师、同学意见→方案草图→ 老师、同学意见→3D模型→多方意见(老师、同学)→ Mars材质处理→多方意见(用户、老师、同学) → Mars 场景制作→多方意见(用户、老师、同学) →最终方案

征求用户意见(确定实验室改造方向)

Ask for user's opinions (Determining the direction of laboratory transformation)

具体采访了三位服装设计专业的同学,并对回答加以整合,以了解使用者的具体感受和对实验室的看法。通过对使用人群体验的调查,我们选定了实验室改造的方向。

Q:实验室布局实用吗?

实用,但因为实验室是大一到大四共用的,设备的布置少了。

Q:设备分配合理吗?

缝纫机和工作台合理, 但熨斗和锁边机配置太少, 供不应求。

Q:设备使用流线会因布置受影响吗?

使用上基本不受影响,因为服装设计加工有主次,没有全部布置在手边的需求。

Q:多媒体交互体验如何?

很实用,学生从教室的每个位置基本都可以看到老师直播的教学内容,一些细节的工艺也可以通过转播看的很清楚。

Q:希望自己的工作空间有何种氛围?

整洁,和能让人感到沉静的工作氛围,并且希望有简约朴实感。

设计概念 朴实,宁静,自然,简约,实用

主选材料 大理石和混凝土

具体定位

- 1.整洁,安全,实用 →易清洁,耐脏耐磨,防火材料。
- 2.有朴实,宁静感的 →表面平整光滑、色泽均匀自然的材料
- 3.不需要特别跳脱的空间来激发想象力,更希望有一个宁静的空间。
 - →材料亲自然,营造原始沉静的美感。

用户参与设计

User Participation in Design

用户体验反馈纪实

- 邀请服设的学生进行VR体验,从对材质的感受到具体功能区的布置等角度咨询他们的看法。
- 本次采访了大 二女生一位, 大三女生一位 ,大三男生一 位。

视频--- ---

用户参与设计

User Participation in Design

用户体验反馈意见

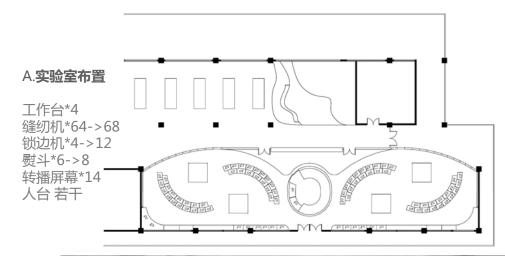
在MARS中进行了几种不同风格的材质组合尝试后,我们邀请了三位服设的同学(使用人群)通过MARS连接 VR设备来体验我们的几个方案。

通过这个调查我们又得到了很多反馈意见。如下。

- 在工作台下方增加储存空间
- 调整多媒体屏幕的高度
- 调整设备(如熨斗)的分配
- 取消桌面隔板的设计
- 选择更合适的照明设备
- 加入休息区
- 优化休息区的功能
- 细化放置纸样和布料的墙面
- 取消不够实用的造型平台

...

综合这些反馈改进后,我们得到了最终方案。



最终方案平面及效果图

Final Plan Plane and Effect Chart

最终方案效果图

Effect pictures of the final plan

直观的方案比较和推敲方法

利用VR提供的沉浸式体验和"所见即所得"的方式帮助学生比较、判断和决策。

学生身临其境般地感受、体 验和评价自己的设计方案

mars配含VR带来的浸入式体验帮助我们更加直观地发现问题,例如室内氛围营造是否达到理想效果,开窗大小是否合理,流线设计是否合理等等。

—— 陈 彦 **文**201750354003

在这次课程中,我们不只是在理论上的一些研究,而是有一种相对真实的体验作为 依据,不会再有我们只是对着平面图空洞的诉说空向,而是一种全息的体验。

----彭金康201750354039

全新的案例分析方法

公众深度参与设计的方法

直观的方案比较和推敲方法

新颖丰富的汇报和展示手段

VR沉浸式体验

3D立体漫游

全景动画 AR绘本

广州美术学院 建筑艺术设计学院

视频--- ---

正在和将要实验的方法… …

虚拟调研

远程互动——异地多人协作完成方案,异地评图

目前正在进行的工作坊,同学和老师都回老家了,远程 互动让我们可以继续工作,世界变得如此近…

①增加乐趣——可视化设计、三维互动增加了学习乐趣,活跃课堂气氛,提升学生的主动性和积极性

"Mars出圖效率都幾快。然後…………天光都幾……幾唔錯,囖。" (講嘅很識做)

——隔鄰村建模師阿偉

"這個課題自由發揮嘅空間很大,做的很興"

(知妳做冊仔做的最興啦)

——靈魂畫傢阿堯

"十四萬嘅賬戶,就系唔—樣!"

(系我就拿錢買車追女仔,佢跟住又講多左一句。)

——鄉土音樂傢阿峰

②提升效率——VR帮助学生快速把握空间感、尺度感、场景感;快速高质量表现设计方案,节省时间、大大提升效率。

新软件的应用大大的加供了我们作为学生的设计速度和质量。

——杨光201750354037

它减少了我们渲染的工作量,可以使我们直观得感受到渲染故果,给后期做视频,截故果图减少了很多工作量。

——陈彦文201750354003

感觉有了软件的辅助,我们的作业过程变的容易了很多,可以很快速,简单直观的操作就做出精度还可以的效果图,并且可以直接通过在其中虚拟的移动来感知,把很多以前**要靠想象的内容给可视化了**,也让我们对自己方案的表达变的容易了很多。

王 カ ② 201750354009

③提高教学质量

Mars的即时渲染、可视化等功能在设计和表现阶段对同学们帮助都很大,大幅提高学生作业整体成果水平,成果丰富、有科技感、高大上·····

⑤节约成本

不用实体模型 不用展板打印 不用文本打印

⑤增加学生成就感

我们小组选择的课题是在网球场新建一个陶艺实验室,因为我和含友跟陶艺的许多人玩的比较熟,更能够方便地邀请她们来宿舍体验,而且为熟悉的朋友新建工作室也挺有意思。最终进行进体验的时候得到的赞美是我们辛苦工作最好的报答。这也多亏了Mars,如果没有它我们也无法社陶艺专业的学生走进实验室里,身临其镜地体验。

——温瑞祺

Thank you

شكرا لك

감사합니다.

谢谢!

ありがとうございます。

ขอบคุณ